Un trabajo internacional con participación de los científicos Josep Peñuelas y Jordi Sardans, del Consejo Superior de Investigaciones Científicas (CSIC) y del Centro de Investigación Ecológica y Aplicaciones Forestales (CREAF), ha desarrollado un modelo para predecir, a partir de datos satelitales de contaminación por dióxido de nitrógeno, la eficacia del confinamiento para frenar epidemias como la covid-19.
A través de este modelo se puede predecir cómo se aceleran los contagios cuando se levantan las medidas de confinamiento. Por lo tanto, la información permite optimizar el tiempo y la intensidad de la implementación de intervenciones no farmacéuticas, y mejorar la efectividad de control de la covid-19 y en general de las pandemias.
Josep Peñuelas, investigador del CSIC y del CREAF explica que “mejora significativamente las predicciones hasta ahora usadas por la OMS y otras organizaciones gubernamentales y no gubernamentales”.
“Tal como hemos visto en el trabajo, en el invierno de 2020 a 2021, cerca de un millón de casos diarios de covid-19 se podrían haber evitado si se hubieran optimizado los tiempos y los niveles de restricción del confinamiento”, comenta Rong Wang, científico de la Universidad de Fudan (China) y coordinador de esta investigación.
La investigación se publica en la revista PNAS y ha contado con la participación de una veintena de centros de investigación internacionales. Se trata de un trabajo interdisciplinar, con especialistas en contaminación atmosférica, economía, epidemiología, análisis de datos e inteligencia artificial.
Seguir leyendo en: SINC.
Artículo completo: “Predicting the effect of confinement on the COVID-19 spread using machine learning enriched with satellite air pollution observations”. Xiaofan Xing et al., en PNAS.